Login / Signup

Moisturizing at a molecular level - the basis of Corneocare.

Rainer VoegeliAnthony Vincent Rawlings
Published in: International journal of cosmetic science (2022)
This review covers the last 20 years of research we and our collaborators have conducted on ethnic differences in facial skin moisturization placed in historical context with previous research. We have focussed particularly on the biochemical and cellular gradients of the stratum corneum (SC) with the aim of discovering new skin moisturization and SC maturation mechanisms, identifying new technologies and/or providing conceptual innovations for ingredients that will improve our understanding and treatment of dry skin. Specifically, we discuss gradients for corneodesmosomes and proteases, corneocyte phenotype-inducing enzymes, filaggrin and natural moisturizing factor (NMF), and barrier lipids. These gradients are interdependent and influence greatly corneocyte maturation. The interrelationship between corneodesmolysis and the covalent attachment of ω-hydroxy ceramides and ω-hydroxy fatty acids to the corneocyte protein envelope forming the corneocyte lipid envelope is especially relevant in our new understanding of mechanisms leading to dry skin. This process is initiated by a linoleoyl-ω-acyl ceramide transforming enzyme cascade including 12R lipoxygenase (12R-LOX), epidermal lipoxygenase-3 (eLOX3), epoxide hydrolase 3 (EPHX3), short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), ceramidase and transglutaminase 1. Our research has opened the opportunity of using novel treatment systems for dry skin based on lipids, humectants, niacinamide and inhibitors of the plasminogen system. It is clear that skin moisturization is a more complex mechanism than simple skin hydration.
Keyphrases
  • soft tissue
  • wound healing
  • fatty acid