Genistein and Galantamine Combinations Decrease β-Amyloid Peptide (1-42)-Induced Genotoxicity and Cell Death in SH-SY5Y Cell Line: an In Vitro and In Silico Approach for Mimic of Alzheimer's Disease.
Willian Orlando Castillo-OrdoñezNilza Velasco PalominoCatarina Satie TakahashiSilvana GiuliattiPublished in: Neurotoxicity research (2020)
Alzheimer's disease (AD) is the primary dementia-causing disease worldwide, involving a multifactorial combination of environmental, genetic, and epigenetic factors, with essential participation of age and sex. Biochemically, AD is characterized by the presence of abnormal deposition of beta amyloid peptide (Aβ(1-42)), which in the brain is strongly correlated with oxidative stress, inflammation, DNA damage, and cholinergic impairment. The multiple mechanisms involved in its etiology create significant difficulty in producing an effective treatment. Neuroprotective properties of genistein and galantamine have been widely demonstrated through different mechanisms; however, it is unknown a possible synergistic neuroprotective effect against Aβ(1-42). In order to understand how genistein and galantamine combinations regulate the mechanisms of neuroprotection, we conducted a set of bioassays in vitro to evaluate cell viability, clonogenic survival, cell death, and anti-genotoxicity. Through molecular docking and therapeutic viability assays, we analyzed the inhibitory activity exerted by genistein on three major protein targets (AChE, BChE, and NMDA) involved in AD. The results showed that genistein and galantamine afforded significant protection at higher concentrations; however, combinations of sub-effective concentrations of both compounds provided marked neuroprotection when they were combined. In silico approaches showed that genistein has higher scores than the positive controls and low toxicity levels; nevertheless, the therapeutic viability indicated that unlike galantamine, genistein cannot undergo the action by P glycoprotein (PGP) and probably may be unable to cross the blood-brain barrier. In conclusion, our results show that genistein and galantamine exert neuroprotective by decreasing genotoxicity and cell death. In silico analysis, suggest that genistein modulates positively the expression of AChE, BChE, and NMDA. In this context, a combination of two or more drugs could inspire an attractive therapeutic strategy.
Keyphrases
- molecular docking
- cell death
- oxidative stress
- dna damage
- cerebral ischemia
- diabetic rats
- molecular dynamics simulations
- brain injury
- mild cognitive impairment
- gene expression
- cognitive decline
- cell cycle arrest
- poor prognosis
- dna methylation
- small molecule
- subarachnoid hemorrhage
- white matter
- combination therapy
- resting state
- cancer therapy
- oxide nanoparticles
- heat shock