Interleukin-1 beta promotes neuronal differentiation through the Wnt5a/RhoA/JNK pathway in cortical neural precursor cells.
Shin-Young ParkMin-Jeong KangJoong-Soo HanPublished in: Molecular brain (2018)
Pro-inflammatory cytokine interleukin-1 beta (IL-1β) is a key mediator of inflammation and stress in the central nervous system (CNS), and is highly expressed in the developing brain. In this study, we investigated the possible role of IL-1β in neuronal differentiation of cortical neural precursor cells (NPCs). We showed that stimulation with IL-1β increased expression levels of neurotrophin-3 (NT3) and neurogenin 1 (Ngn1) and promoted neurite outgrowth. We also found that IL-1β increased mRNA and protein levels of Wnt5a. Knockdown of Wnt5a by transfection with Wnt5a siRNA inhibited IL-1β-induced neuronal differentiation. Moreover, IL-1β-induced Wnt5a expression was regulated by nuclear factor kappa B (NF-κB) activation, which is involved in IL-1β-mediated neuronal differentiation. To examine the role of Wnt5a in neuronal differentiation of NPCs, we exogenously added Wnt5a. We found that exogenous Wnt5a promotes neuronal differentiation, and activates the RhoA/Rho-associated kinase (ROCK)/c-jun N-terminal kinase (JNK) pathway. In addition, Wnt5a-induced neuronal differentiation was blocked by RhoA siRNA, as well as by a specific Rho-kinase inhibitor (Y27632) or a SAPK/JNK inhibitor (SP600125). Furthermore, treatment with RhoA siRNA, Y27632, or SP600125 suppressed the IL-1β-induced neuronal differentiation. Therefore, these results suggest that the sequential Wnt5a/RhoA/ROCK/JNK pathway is involved in IL-1β-induced neuronal differentiation of NPCs.
Keyphrases
- cell proliferation
- stem cells
- induced apoptosis
- nuclear factor
- cerebral ischemia
- high glucose
- signaling pathway
- diabetic rats
- cell death
- oxidative stress
- poor prognosis
- toll like receptor
- cell cycle arrest
- endothelial cells
- blood brain barrier
- binding protein
- pi k akt
- inflammatory response
- immune response
- smooth muscle
- functional connectivity