Login / Signup

Potential role of miR-214 in β-catenin gene expression within hepatocellular carcinoma.

Hamzeh KarimkhanlooSamira Mohammadi-YeganehRazie HadaviAmeneh KoochakiMahdi Paryan
Published in: Molecular biology reports (2020)
MicroRNAs (miRNAs) are important gene regulators whose dysregulations can be involved in tumorigenesis. β-catenin, the main agent in the Wnt/β-catenin pathway, controls various genes and its over-expression has been discovered in different kinds of cancers including Hepatocellular Carcinoma (HCC). Extensive research demonstrated that the Wnt signaling is one of the major affected pathways in HCC. This study aimed to find miRNA targeting β-catenin gene by bioinformatic approaches and confirm this correlation to propose new therapeutic targets for HCC. Prediction of miRNAs targeting 3'-Untranslated Regions (UTR) of β-catenin mRNA, were done using different types of credible bioinformatic databases. The luciferase assay was also recruited for further confirmation of the bioinformatic predictions. In the first step, the expression of β-catenin was assessed in the HepG2 cell line by real-time PCR technique. Next, transduction of HepG2 cells were done by lentiviral vectors containing the desired miRNA. Then, the expression level of miRNA and the β-catenin gene were evaluated. Based on the results obtained from different bioinformatic databases, miR-214 was selected as the potential miRNA with the highest probability in targeting β-catenin. Furthermore, Luciferase assay results confirmed the accuracy of our bioinformatic prediction. In line with our hypothesis, after the overexpression of miR-214 in HepG2 cells, β-catenin gene expression was reduced significantly. Gathered results indicate the miRNAs role in the down-regulation of their target genes. Hence, the results propose that miR-214 can prevent HCC development by suppressing β-catenin and may supply a newfound approach towards HCC therapy in humans.
Keyphrases