Conformational Dynamics of DNA Binding and Cas3 Recruitment by the CRISPR RNA-Guided Cascade Complex.
Paul B G van ErpAngela PattersonRavi KantLuke BerrySarah M GoldenBrittney L ForsmanJoshua CarterRyan N JacksonBrian BothnerBlake WiedenheftPublished in: ACS chemical biology (2017)
Bacteria and archaea rely on CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided adaptive immune systems for sequence specific elimination of foreign nucleic acids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble with Cas (CRISPR-associated) proteins into a 405-kilodalton multisubunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade binds foreign DNA complementary to the crRNA guide and recruits Cas3, a trans-acting nuclease-helicase required for target degradation. Structural models of Cascade have captured static snapshots of the complex in distinct conformational states, but conformational dynamics of the 11-subunit surveillance complex have not been measured. Here, we use hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to map conformational dynamics of Cascade onto the three-dimensional structure. New insights from structural dynamics are used to make functional predictions about the mechanisms of the R-loop coordination and Cas3 recruitment. We test these predictions in vivo and in vitro. Collectively, we show how mapping conformational dynamics onto static 3D-structures adds an additional dimension to the functional understanding of this biological machine.