Login / Signup

Recessed Ag/AgCl Microelectrode-Supported Lipid Bilayer for Nanopore Sensing.

Kan ShojiRyuji KawanoRyan J White
Published in: Analytical chemistry (2020)
Biological nanopores reconstituted into supported lipid bilayer membranes are widely used as a platform for stochastic nanopore sensing with the ability to detect single molecules including, for example, single-stranded DNA (ssDNA) and miRNA. A main thrust in this area of research has been to improve overall bilayer stability and ease of measurements. These improvements are achieved through a variety of clever strategies including droplet-based techniques; however, they typically require specific microfabrication techniques to prepare devices or special manipulation techniques for microdroplets. Here, we describe a new method to prepare lipid bilayers using a recessed-in-glass Ag/AgCl microelectrode as a support structure. The lipid bilayer is formed at the tip of the microelectrode by immersing the microelectrode into a layered bath solution consisting of an oil/lipid mixture and an aqueous electrolyte solution. In this paper, we demonstrate this stable, supported lipid bilayer structure for channel current measurements of pore-forming toxins and single-molecule detection of ssDNA. This Ag/AgCl-supported lipid bilayer can potentially be widely adopted as a lipid membrane platform for nanopore sensing because of its simple and easy procedure needed to prepare lipid bilayers.
Keyphrases
  • single molecule
  • fatty acid
  • quantum dots
  • high throughput
  • solid state
  • molecular dynamics simulations
  • ionic liquid
  • minimally invasive
  • single cell