Pilot-scale application of a single-stage hybrid airlift BioCAST bioreactor for treatment of ammonium from nitrite-limited wastewater by a partial nitrification/anammox process.
Nayereh SaborimaneshDavid WalshLaleh YerushalmiEsteban Castillo ArriagadaCatherine N MulliganPublished in: Environmental science and pollution research international (2019)
This paper presents the treatment of a nitrite-limited wastewater by partial nitrification/anammox process under different dissolved oxygen (DO) concentrations of < 1.2 mg/L, < 0.5 mg/L, and 0 mg/L, and at temperatures of 35 to 27 °C in a pilot-scale single-stage hybrid bioreactor (BioCAST). The effect of operational parameters on microbial community structure and composition has also been investigated during the 1-year experimental period. Ammonium removal efficiencies of 73 ± 19% at 35-32 °C and 87 ± 9% at 29-27 °C were obtained from a synthetic nitrite-limited wastewater with ammonium concentration of 350-500 mg/L (175-250 g m-3 d-1). The adaptation of bacteria to a lower temperature (27 °C) and lower free ammonia concentrations at 27 °C was showed to be key factors leading to the optimal nitrite production by aerobic ammonium-oxidizing bacteria (AOB). No nitrite accumulation was observed due to the effective distribution and transfer of nitrite produced by the AOB in the aerobic zone to the microaerophilic/anoxic zones. The fast enrichment of Candidatus species in the suspended biomass in the anoxic zone at temperatures of 35-30 °C and in the attached biofilm in the microaerophilic zone (DO < 0.5 mg/L) at 29-27 °C suggests that the growth media (e.g., suspended biomass vs attached biofilm) had a minor effect on the diversity of microbial community in this bioreactor. This study supports the effective treatment of nitrite-limited wastewater with ammonium concentrations of < 500 mg/L by partial nitrification/anammox process at 35-27 °C in a single-stage hybrid bioreactor by adjusting the DO concentration to < 0.5 mg/L and by providing longer retention times for aerobic (AOB) and anammox bacteria in the biofilm, which resulted in the long-term suppression of nitrite-oxidizing bacteria (NOB).