Login / Signup

A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control.

Aaron M Olsen
Published in: The Journal of experimental biology (2019)
Closed kinematic chains (CKCs), links connected to form one or more closed loops, are used as simple models of musculoskeletal systems (e.g. the four-bar linkage). Previous applications of CKCs have primarily focused on biomechanical systems with rigid links and permanently closed chains, which results in constant mobility (the total degrees of freedom of a system). However, systems with non-rigid elements (e.g. ligaments and muscles) and that alternate between open and closed chains (e.g. standing on one foot versus two) can also be treated as CKCs with changing mobility. Given that, in general, systems that have fewer degrees of freedom are easier to control, what implications might such dynamic changes in mobility have for motor control? Here, I propose a CKC classification to explain the different ways in which mobility of musculoskeletal systems can change dynamically during behavior. This classification is based on the mobility formula, taking into account the number of loops in the CKC and the nature of the constituent joint mobilities. I apply this mobility-based classification to five biomechanical systems: the human lower limbs, the operculum-lower jaw mechanism of fishes, the upper beak rotation mechanism of birds, antagonistic muscles at the human ankle joint and the human jaw processing a food item. I discuss the implications of this classification, including that mobility itself may be dynamically manipulated to simplify motor control. The principal aim of this Commentary is to provide a framework for quantifying mobility across diverse musculoskeletal systems to evaluate its potentially key role in motor control.
Keyphrases
  • machine learning
  • deep learning
  • endothelial cells
  • risk assessment
  • dna methylation
  • preterm infants
  • pluripotent stem cells
  • hiv infected
  • men who have sex with men
  • human immunodeficiency virus
  • human health