Changes in Isoflavone Profile from Soybean Seeds during Cheonggukjang Fermentation Based on High-Resolution UPLC-DAD-QToF/MS: New Succinylated and Phosphorylated Conjugates.
Su-Ji LeeRyeong Ha KwonJu Hyung KimHyemin NaSo-Jeong LeeYu-Mi ChoiHyemyeong YoonSo-Young KimYong-Suk KimSang Hoon LeeSeon Mi YooHeon-Woong KimChi-Do WeePublished in: Molecules (Basel, Switzerland) (2022)
In this study, thirty-eight isoflavone derivatives were comprehensively identified and quantified from the raw, steamed and fermented seeds of four selected soybean cultivars based on UPLC-DAD-QToF/MS results with reference to the previously reported LC-MS library and flavonoid database, and summarized by acylated group including glucosides (Glu), malonyl-glucosides (Mal-Glu), acetyl-glucosides (Ac-Glu), succinyl-glucosides (Suc-Glu) and phosphorylated conjugates (Phos) in addition to aglycones. Among them, Suc-Glu and Phos derivatives were newly generated due to fermentation by B. subtilis AFY-2 ( cheonggukjang ). In particular, Phos were characterized for the first time in fermented soy products using Bacillus species. From a proposed roadmap on isoflavone-based biotransformation, predominant Mal-Glu (77.5-84.2%, raw) decreased rapidly by decarboxylation and deesterification into Ac-Glu and Glu (3.5-8.1% and 50.0-72.2%) during steaming, respectively. As fermentation continued, the increased Glu were mainly succinylated and phosphorylated as well as gradually hydrolyzed into their corresponding aglycones. Thus, Suc-Glu and Phos (17.3-22.4% and 1.5-5.4%, 36 h) determined depending on cultivar type and incubation time, and can be considered as important biomarkers generated during cheonggukjang fermentation. Additionally, the changes of isoflavone profile can be used as a fundamental report in applied microbial science as well as bioavailability research from fermented soy foods.