Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats.
Maria Cristina RulliPaolo D'OdoricoNikolas GalliDavid T S HaymanPublished in: Nature food (2021)
The extent to which humans facilitate zoonotic transmission of infectious diseases is unclear. Human encroachment into wildlife habitats as a consequence of expanding urbanization, cropland area and intensive animal farming is hypothesized to favour the emergence of zoonotic diseases. Here we analyse comprehensive, high-resolution datasets on forest cover, cropland distribution, livestock density, human population, human settlements, bat species' distribution and land-use changes in regions populated by Asian horseshoe bats (>28.5 million km 2 )-the species that most commonly carry severe acute respiratory syndrome (SARS)-related coronaviruses. We identify areas at risk of SARS-related coronavirus outbreaks, showing that areas in China populated by horseshoe bats exhibit higher forest fragmentation and concentrations of livestock and humans than other countries. Our findings indicate that human-livestock-wildlife interactions in China may form hotspots with the potential to increase SARS-related coronavirus transmission from animals to humans.