Comparative efficacy of different noninvasive brain stimulation protocols on upper-extremity motor function and activities of daily living after stroke: a systematic review and network meta-analysis.
Ling-Ling LiJia-Jia WuKun-Peng LiJing JinYun-Ting XiangXu-Yun HuaMou-Xiong ZhengJian-Guang XuPublished in: Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology (2024)
The objectives of the study were to systematically evaluate the rehabilitation effect of noninvasive brain stimulation (NIBS) on upper extremity motor function and activities of daily living in stroke patients and to prioritize various stimulation protocols for reliable evidence-based medical recommendations in patients with upper extremity motor dysfunction after stroke. Web of Science, PubMed, Embase, Cochrane Library, CNKI, Wanfang, VIP, and CBM were searched to collect all randomized controlled trials (RCTs) of NIBS to improve upper extremity motor function in stroke patients. The retrieval time was from the establishment of all databases to May 2023. According to the Cochrane system evaluation manual, the quality of the included studies was evaluated, and the data were extracted. Statistical analysis was carried out by using RevMan 5.3, R 4.3.0, and Stata 17.0 software. Finally, 94 RCTs were included, with a total of 5546 patients. Meta-analysis showed that NIBS improved the Fugl-Meyer assessment (FMA) score (mean difference (MD) = 6.51, 95% CI 6.20 ~ 6.82, P < 0.05), MBI score (MD = 7.69, 95% CI 6.57 ~ 8.81, P < 0.05), ARAT score (MD = 5.06, 95% CI 3.85 ~ 6.27, P < 0.05), and motor evoked potential (MEP) amplitude. The modified Ashworth scale score (MD = - 0.37, 95% CI - 0.60 to - 0.14, P < 0.05), National Institutes of Health Stroke Scale score (MD = - 2.17, 95% CI - 3.32 to - 1.11, P < 0.05), incubation period of MEP (MD = - 0.72, 95% CI - 1.06 to - 0.38, P < 0.05), and central motor conduction time (MD = - 0.90, 95% CI - 1.29 to - 0.50, P < 0.05) were decreased in stroke patients. Network meta-analysis showed that the order of interventions in improving FMA scores from high to low was anodal-transcranial direct current stimulation (tDCS) (surface under the cumulative ranking curve (SUCRA) = 83.7%) > cathodal-tDCS (SUCRA = 80.2%) > high-frequency (HF)-repetitive transcranial magnetic stimulation (rTMS) (SUCRA = 68.5%) > low-frequency (LF)-rTMS (SUCRA = 66.5%) > continuous theta burst stimulation (cTBS) (SUCRA = 54.2%) > bilateral-tDCS (SUCRA = 45.2%) > intermittent theta burst stimulation (iTBS) (SUCRA = 34.1%) > sham-NIBS (SUCRA = 16.0%) > CR (SUCRA = 1.6%). In terms of improving MBI scores, the order from high to low was anodal-tDCS (SUCRA = 88.7%) > cathodal-tDCS (SUCRA = 85.4%) > HF-rTMS (SUCRA = 63.4%) > bilateral-tDCS (SUCRA = 56.0%) > LF-rTMS (SUCRA = 54.2%) > iTBS (SUCRA = 32.4%) > sham-NIBS (SUCRA = 13.8%) > CR (SUCRA = 6.1%). NIBS can effectively improve upper extremity motor function and activities of daily living after stroke. Among the various NIBS protocols, anodal-tDCS demonstrated the most significant intervention effect, followed by cathodal-tDCS and HF-rTMS.
Keyphrases
- transcranial direct current stimulation
- transcranial magnetic stimulation
- high frequency
- working memory
- systematic review
- molecular dynamics
- randomized controlled trial
- healthcare
- end stage renal disease
- clinical trial
- physical activity
- resting state
- heart failure
- brain injury
- functional connectivity
- peritoneal dialysis
- cerebral ischemia
- newly diagnosed
- subarachnoid hemorrhage
- quality improvement
- climate change