Login / Signup

Comparison of LncRNA Expression Profiles during Myogenic Differentiation and Adipogenic Transdifferentiation of Myoblasts.

Renli QiXiaoyu QiuYong ZhangJing WangQi WangMin WuJinxiu HuangFeiyun Yang
Published in: International journal of molecular sciences (2019)
Myoblasts could transdifferentiate into adipocytes or adipocyte-like cells, which have the capability of producing and storing intracellular lipids. Long-chain non-coding RNAs (lncRNAs) have many important physiological functions in eukaryotes, which include regulating gene expression, chromosome silencing, and nuclear transport. However, changes in the expression of lncRNAs in muscle cells during adipogenic transdifferentiation have not been investigated to date. Here, C2C12 myoblasts were seeded and then induced to undergo myogenic and adipogenic transdifferentiation. The expression profiles of lncRNAs in various differentiated cells were analyzed and then compared by digital gene expression (DGE) RNA sequencing. A total of 114 core lncRNAs from 836 differentially expressed lncRNAs in adipogenic cells were identified. Further investigation by in silico analysis revealed that the target genes of core lncRNAs significantly enriched various signaling pathways that were related to glucose and lipid metabolism and muscle growth. The lncRNA-GM43652 gene was a potential regulator of adipogenesis in muscle cells. It showed the highest levels of expression in adipogenic cells, and the knocking down lncRNA-GM43652 negatively influenced lipid deposition in transdifferentiated myoblasts. This study has identified the novel candidate regulators that may be assessed in future molecular studies on adipogenic conversion of muscle cells.
Keyphrases