Login / Signup

Multichannel Nanogenerator-Driven Collaborative Metabolic Fingerprint Diagnostic Strategy for Early Screening and Risk Evaluation of Nonalcoholic Fatty Liver Disease.

Chenjie YangDa ZhouHailong YuYijie ChenHairu LinHao WuChun-Hui Deng
Published in: Analytical chemistry (2024)
Nonalcoholic fatty liver disease (NAFLD), along with its progressive forms nonalcoholic steatohepatitis (NASH) and NASH fibrosis, has emerged as a global health crisis. However, the absence of robust screening and risk evaluation tools contributes to the underdiagnosis of NAFLD. Herein, we reported a multichannel nanogenerator-assisted laser desorption/ionization mass spectrometry (LDI-MS) platform for early screening and risk evaluation of NAFLD. Specifically, titanium oxide nanosheets (TiNS) and covalent-organic framework nanosheets (COFNS) were employed as nanogenerators with excellent optical properties and exhibited efficient desorption/ionization during the LDI-MS process. Only ∼0.025 μL of serum without pretreatments and separation, serum metabolic fingerprints (SMFs) can be extracted within seconds. Notably, integrated SMFs from TiNS and COFNS significantly improved diagnostic performance and achieved the area under the curve (AUC) values of 1.000 with 100% sensitivity and 100% specificity for the validation sets of global diagnosis, early diagnosis, high-risk NASH, and NASH fibrosis evaluation. Additionally, four biomarker panels were identified, and their diagnostic AUC values were more than 0.944. Ultimately, key metabolic pathways indicating the change from simple NAFLD to high-risk NASH and NASH fibrosis were uncovered. This work provided a noninvasive and high-throughput screening and risk evaluation strategy for NAFLD healthcare management, thus contributing to the precise treatment of the NALFD.
Keyphrases