Cobalt Chloride Enhances the Anti-Inflammatory Potency of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells through the ERK-HIF-1α-MicroRNA-146a-Mediated Signaling Pathway.
Jihye KwakSoo Jin ChoiWonil OhYoon Sun YangHong Bae JeonEun Su JeonPublished in: Stem cells international (2018)
Human mesenchymal stem cells (hMSCs), including human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), which have high proliferation capacity and immunomodulatory properties, are considered to be a good candidate for cell-based therapies. hMSCs show enhanced therapeutic effects via paracrine secretion or cell-to-cell contact that modulates inflammatory or immune reactions. Here, treatment with cobalt chloride (CoCl2) was more effective than naïve hUCB-MSCs in suppressing inflammatory responses in a coculture system with phytohemagglutinin- (PHA-) activated human peripheral blood mononuclear cells (hPBMCs). Furthermore, the effect of CoCl2 is exerted by promoting the expression of anti-inflammatory mediators (e.g., PGE2) and inhibiting that of inflammatory cytokines (e.g., TNF-α and IFN-γ). Treatment of hUCB-MSCs with CoCl2 leads to increased expression of microRNA- (miR-) 146a, which was reported to modulate anti-inflammatory responses. Hypoxia-inducible factor- (HIF-) 1α silencing and ERK inhibition abolished CoCl2-induced miR-146a expression, suggesting that ERK and HIF-1α signals are required for CoCl2-induced miR-146a expression in hUCB-MSCs. These data suggest that treatment with CoCl2 enhances the immunosuppressive capacity of hUCB-MSCs through the ERK-HIF-1α-miR-146a-mediated signaling pathway. Furthermore, pretreatment of transplanted MSCs with CoCl2 can suppress lung inflammation more than naïve MSCs can in a mouse model of asthma. These findings suggest that CoCl2 may improve the therapeutic effects of hUCB-MSCs for the treatment of inflammatory diseases.
Keyphrases
- mesenchymal stem cells
- signaling pathway
- cell proliferation
- umbilical cord
- cord blood
- poor prognosis
- pi k akt
- long non coding rna
- endothelial cells
- cell therapy
- oxidative stress
- mouse model
- single cell
- epithelial mesenchymal transition
- rheumatoid arthritis
- bone marrow
- binding protein
- big data
- stem cells
- machine learning
- electronic health record
- combination therapy
- gold nanoparticles
- reduced graphene oxide