Calculating Protein-Ligand Residence Times through State Predictive Information Bottleneck Based Enhanced Sampling.
Suemin LeeDedi WangMarkus A SeeligerPratyush TiwaryPublished in: Journal of chemical theory and computation (2024)
Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long time scales. Recent advances in rare event sampling have allowed us to reach these time scales, yet predicting protein-ligand residence times remains a significant challenge. Here we present a semi-automated protocol to calculate the ligand residence times across 12 orders of magnitude of time scales. In our proposed framework, we integrate a deep learning-based method, the state predictive information bottleneck (SPIB), to learn an approximate reaction coordinate (RC) and use it to guide the enhanced sampling method metadynamics. We demonstrate the performance of our algorithm by applying it to six different protein-ligand complexes with available benchmark residence times, including the dissociation of the widely studied anticancer drug Imatinib (Gleevec) from both wild-type Abl kinase and drug-resistant mutants. We show how our protocol can recover quantitatively accurate residence times, potentially opening avenues for deeper insights into drug development possibilities and ligand recognition mechanisms.
Keyphrases
- molecular dynamics
- drug resistant
- deep learning
- randomized controlled trial
- wild type
- machine learning
- adverse drug
- drug induced
- protein protein
- density functional theory
- binding protein
- acinetobacter baumannii
- cystic fibrosis
- high resolution
- emergency department
- chronic myeloid leukemia
- pseudomonas aeruginosa
- transcription factor
- social media
- convolutional neural network
- protein kinase
- neural network