Inhibition of Glucose Transport by Tomatoside A, a Tomato Seed Steroidal Saponin, through the Suppression of GLUT2 Expression in Caco-2 Cells.
Baorui LiYusuke TerazonoNaoto HirasakiYuki TatemichiEmiko KinoshitaAkio ObataToshiro MatsuiPublished in: Journal of agricultural and food chemistry (2018)
We investigated whether tomatoside A (5α-furostane-3β,22,26-triol-3-[O-β-d-glucopyranosyl (1→2)-β-d-glucopyranosyl (1→4)-β-d-galactopyranoside] 26-O-β-d-glucopyranoside), a tomato seed saponin, may play a role in the regulation of intestinal glucose transport in human intestinal Caco-2 cells. Tomatoside A could not penetrate through Caco-2 cell monolayers, as observed in the transport experiments using liquid chromatography-mass spectrometry. The treatment of cells with 10 μM tomatoside A for 3 h resulted in a 46.0% reduction in glucose transport as compared to untreated cells. Western blotting analyses revealed that tomatoside A significantly (p < 0.05) suppressed the expression of glucose transporter 2 (GLUT2) in Caco-2 cells, while no change in the expression of sodium-dependent glucose transporter 1 was observed. In glucose transport experiments, the reduced glucose transport by tomatoside A was ameliorated by a protein kinase C (PKC) inhibitor and a multidrug resistance-associated protein 2 (MRP2) inhibitor. The tomatoside A-induced reduction in glucose transport was restored in cells treated with apical sodium-dependent bile acid transporter (ASBT) siRNA or an ASBT antagonist. These findings demonstrated for the first time that the nontransportable tomato seed steroidal saponin, tomatoside A, suppressed GLUT2 expression via PKC signaling pathway during the ASBT-influx/MRP2-efflux process in Caco-2 cells.
Keyphrases
- induced apoptosis
- cell cycle arrest
- signaling pathway
- mass spectrometry
- blood glucose
- poor prognosis
- liquid chromatography
- endoplasmic reticulum stress
- stem cells
- cell death
- type diabetes
- pi k akt
- oxidative stress
- endothelial cells
- skeletal muscle
- protein kinase
- mesenchymal stem cells
- binding protein
- metabolic syndrome
- cancer therapy
- stress induced
- glycemic control
- replacement therapy