Login / Signup

Investigating the role of EGF-CFC gene family in recurrent pregnancy loss through bioinformatics and molecular approaches.

João Matheus BremmJuliano André BoquettMarcus Silva MichelsThayne Woycinck KowalskiFlávia Gobetti GomesFernanda Sales Luiz ViannaMaria Teresa Vieira SanseverinoLucas Rosa Fraga
Published in: Systems biology in reproductive medicine (2021)
Recurrent pregnancy loss (RPL) is the most common reproductive failure, reaching 1-5% of women throughout their lives, and having unknown etiology in 50% of the cases. In humans, EGF-CFC1 (Epidermal Growth Factors & Cripto/FRL-1/Cryptic) gene family is composed by TDGF1 and CFC1, two developmental genes. The aim of this study was to investigate the role of EGF-CFC on RPL. To this, multiple approaches were performed; we conducted an expression analysis of TDGF1 and CFC1 using publicly available data from Gene Omnibus Expression (GEO), systems biology analyses and functional prediction; and a molecular analysis carried out in a case-control study. Our GEO analysis showed a decrease in TDGF1 expression in the endometrium (p=0.049) and CFC1 expression in placenta (p=0.015) of women with RPL. Network analysis, gene ontology and literature pointed to a strong connection between EGF-CFC1 gene family to pathways that play key roles during pregnancy, including TGF-β, c-Src/MAPK/AKT, Notch, TNFα, IFNγ and IL-6. A pathogenicity score developed for this gene family showed that the c.-14+1429T>C (rs3806702) variant in the TDGF1 and the p.Arg47Gln (rs201431919) variant in CFC1 gene would be the ones with the highest deleterious effect for RPL. In the case-control study, which involved 149 women with RPL and 159 controls, no statistical difference was observed in the allele and genotype distributions of the variants studied in the two groups. In this study, we performed extensive bioinformatics analysis for biomarker prioritization followed by experimental validation of proposed selected markers. Although there is no statistical difference in the frequencies of these variants between RPL and controls, the expression analysis results suggest that TDGF1 and CFC1 genes might play a role in RPL. In addition, systems biology analyzes raise the hypothesis that genes in other signaling pathways that may be related to RPL as good candidates for future studies.Abbreviations RPL: recurrent pregnancy loss; EGF-CFC1: Epidermal Growth Factors - Cripto/FRL-1; GEO: Gene Omnibus Expression; KEGG: Kyoto Encyclopedia of Genes and Genomes.
Keyphrases