Login / Signup

Parasite infectious stages provide essential fatty acids and lipid-rich resources to freshwater consumers.

Keira M McKeeJanet KoprivnikarPieter T J JohnsonMichael T Arts
Published in: Oecologia (2019)
Free-living parasite infectious stages, such as motile cercariae of trematodes (flatworms), can constitute substantial biomass within aquatic ecosystems and are frequently eaten by various consumers, potentially serving as an important source of nutrients and energy. However, quantitative data on their nutritional value (e.g., essential fatty acids [EFA]) are largely lacking. As EFA are leading indicators of nutritional quality and underpin aquatic ecosystem productivity, we performed fatty acid (FA) analysis on an aggregate of ~ 30,000 cercariae of the freshwater trematode, Ribeiroia ondatrae. Individual cercariae contained 15 ng of total FA, and considerable quantities of EFA, including eicosapentaenoic (EPA, at 0.79 ng cercaria-1) and docosahexaenoic (DHA, at 0.01 ng cercaria-1) acids. We estimated annual EFA production by R. ondatrae cercariae for a series of ponds in California to be 40.4-337.0 μg m-2 yr-1 for EPA and 0.7-6.2 μg m-2 yr-1 for DHA. To investigate viability of cercariae as prey, we also compared growth and FA profiles of dragonfly larvae (naiads of Leucorrhinia intacta) fed equivalent masses of either R. ondatrae or zooplankton (Daphnia spp.) for 5 weeks. Naiads raised on the two diets grew equally well, with no significant differences found in their EFA profiles. While zooplankton are widely recognized as a vital source of energy, and an important conduit for the movement of EFA between algae and higher trophic levels, we suggest a similar role for trematode cercariae by 'unlocking' EFA from the benthic environment, highlighting their potential importance as a nutrient source that supports animal health.
Keyphrases