Login / Signup

Automatically generate two-dimensional gating hierarchy from clustered cytometry data.

Xingyu YangPeng Qiu
Published in: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2018)
Cytometry is an important technique widely used in medicine and biological research. Biologists traditionally analyze single-cell cytometry data by manual gating, which can be subjective and labor intensive. To address this issue, many automated and semiautomated methods have been developed. These advanced methods are designed to speed up and standardize the analysis of cytometry data, but their popularity is limited by their visualizations which are not intuitive to biologists who are accustomed to the conventional biaxial gating plots. In this article, we present a new method called Cluster-to-Gate (C2G) that can take clustering results as input, and automatically generate a nested two-dimensional gating hierarchy, which is a visualization representation that biologists are familiar with. This method can generate gating sequences for multiple target populations simultaneously and summarize them in one hierarchical tree that represents the gating hierarchy. We have tested this method on target populations defined by manual gating, automated clustering algorithms (k-means for example), and visualization-assisted methods (SPADE and tSNE). We have demonstrated that C2G is able to generate gating sequences that capture cell populations defined by the various clustering strategies, and robust to over-clustered and overlapping target populations. © 2018 International Society for Advancement of Cytometry.
Keyphrases
  • single cell
  • rna seq
  • high throughput
  • machine learning
  • electronic health record
  • deep learning
  • genetic diversity
  • cell therapy
  • sleep quality
  • artificial intelligence