Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior.
Ashley E LepackRosemary C BagotCatherine J PeñaYong-Hwee E LohLorna A FarrellyYang LuSamuel K PowellZachary S LorschOrna IsslerHannah M CatesCarol A TammingaHenrik MolinaLi ShenEric J NestlerC David AllisIan MazePublished in: Proceedings of the National Academy of Sciences of the United States of America (2016)
Human major depressive disorder (MDD), along with related mood disorders, is among the world's greatest public health concerns; however, its pathophysiology remains poorly understood. Persistent changes in gene expression are known to promote physiological aberrations implicated in MDD. More recently, histone mechanisms affecting cell type- and regional-specific chromatin structures have also been shown to contribute to transcriptional programs related to depressive behaviors, as well as responses to antidepressants. Although much emphasis has been placed in recent years on roles for histone posttranslational modifications and chromatin-remodeling events in the etiology of MDD, it has become increasingly clear that replication-independent histone variants (e.g., H3.3), which differ in primary amino acid sequence from their canonical counterparts, similarly play critical roles in the regulation of activity-dependent neuronal transcription, synaptic connectivity, and behavioral plasticity. Here, we demonstrate a role for increased H3.3 dynamics in the nucleus accumbens (NAc)-a key limbic brain reward region-in the regulation of aberrant social stress-mediated gene expression and the precipitation of depressive-like behaviors in mice. We find that molecular blockade of these dynamics promotes resilience to chronic social stress and results in a partial renormalization of stress-associated transcriptional patterns in the NAc. In sum, our findings establish H3.3 dynamics as a critical, and previously undocumented, regulator of mood and suggest that future therapies aimed at modulating striatal histone dynamics may potentiate beneficial behavioral adaptations to negative emotional stimuli.
Keyphrases
- major depressive disorder
- bipolar disorder
- gene expression
- transcription factor
- dna methylation
- public health
- stress induced
- amino acid
- healthcare
- dna damage
- resting state
- endothelial cells
- mental health
- functional connectivity
- white matter
- type diabetes
- copy number
- metabolic syndrome
- brain injury
- social support
- high fat diet induced
- multiple sclerosis
- heat shock
- single molecule
- depressive symptoms
- adipose tissue
- skeletal muscle
- physical activity
- heat shock protein