An Efficient Synthesis of Lysophosphatidylcholine Enriched with n-3 Polyunsaturated Fatty Acids by Immobilized MAS1 Lipase.
Xiumei WangXiaoli QinXiuting LiZexin ZhaoBo YangYonghua WangPublished in: Journal of agricultural and food chemistry (2019)
n-3 polyunsaturated fatty acid (PUFA)-rich lysophosphatidylcholine (LPC) with many beneficial effects was effectively synthesized by immobilized MAS1 lipase-catalyzed esterification of n-3 PUFA with sn-glycero-3-phosphatidylcholine (GPC) under vacuum in a solvent-free system. Immobilized MAS1 lipase was found to be a more suitable catalyst for the production of n-3 PUFA-rich LPC when compared with Novozym 435. The maximal GPC conversion and LPC content (93.12% and 90.77 mol %) were obtained under the optimized conditions (enzyme loading of 300 U/g substrate, temperature of 55 °C, and n-3 PUFA/GPC molar ratio of 20:1). Moreover, it was observed that 1-acyl-sn-glycero-3-lysophosphatidylcholine (sn-1 acyl LPC) was the main reaction product, as demonstrated by molecular docking. These results showed that immobilized MAS1 lipase had high phospholipase activity with a predominant specificity for the sn-1 hydroxyl position of GPC to efficiently synthesize highly pure n-3 PUFA-rich LPC from GPC for industrial application.