Lawsone encapsulated polylactic-co-glycolic acid nanoparticles modified with chitosan-folic acid successfully inhibited cell growth and triggered apoptosis in Panc-1 cancer cells.
Helia GhafaripourMasoud Homayouni TabriziEhsan KarimiNiloofar Barati NaeeniPublished in: IET nanobiotechnology (2023)
The present research aims to encapsulate lawsone in polylactic-co-glycolic acid (PLGA) nanoparticles modified with folic acid (FA) and chitosan (CS) to study its anticancer effects against Panc-1 cells. The nanoparticles were analysed in means of shape/size and zeta potential index using scanning electron microscope and dynamic light scattering. High-performance liquid chromatography was applied to evaluate the lawsone entrapment efficacy. The authors performed acridine orange/propidium iodide staining and flow cytometry to monitor apoptosis induction and cell cycle arrest. The expressions of apoptosis-related genes (BAX and BCL-2) were assessed by real time PCR. Nanoparticle antioxidative and antibacterial activities were examined by DPPH/ABTS scavenging assay, disk diffusion method, and minimum inhibitory concentration and minimum bactericidal concentration evaluation. The NPs were 229.65 nm, the encapsulation efficiency was 81%. The concentration of lawsone that exerts 50% cell growth inhibition (IC 50 ) against Panc-1 cells was calculated 118.4 μL. Apoptosis induction was evidenced by the increased number of orange cells and increased proportion of cells in G1-Sub phase respectively. Moreover, lawsone-loaded nanoparticle upregulated BAX gene expression, while downregulated BCL2expression, suggesting the activation of apoptotic pathway. The observed cytotoxic/apoptotic properties suggest that Lawson-loaded PLGA-FA-CS-NPs hold a great potential in pancreatic cancer treatment.
Keyphrases
- cell cycle arrest
- cell death
- pi k akt
- induced apoptosis
- drug delivery
- endoplasmic reticulum stress
- gene expression
- oxidative stress
- flow cytometry
- signaling pathway
- cell proliferation
- high performance liquid chromatography
- dna methylation
- cancer therapy
- high resolution
- real time pcr
- high throughput
- long non coding rna
- poor prognosis
- mass spectrometry
- human health