Metatranscriptomic Analysis Reveals Disordered Alterations in Oropharyngeal Microbiome during the Infection and Clearance Processes of SARS-CoV-2: A Warning for Secondary Infections.
Yongzhao ZhouSifen LuXiaozhen WeiYa HuHonghao LiJing WangYifei LinMengjiao LiMinjin WangJinmin MaZhongyi ZhuShengying YangBinwu YingWengeng ZhangBojiang ChenWeimin LiPublished in: Biomolecules (2022)
This study was conducted to investigate oropharyngeal microbiota alterations during the progression of coronavirus disease 2019 (COVID-19) by analyzing these alterations during the infection and clearance processes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The diagnosis of COVID-19 was confirmed by using positive SARS-CoV-2 quantitative reverse transcription polymerase chain reaction (RT-qPCR). The alterations in abundance, diversity, and potential function of the oropharyngeal microbiome were identified using metatranscriptomic sequencing analyses of oropharyngeal swab specimens from 47 patients with COVID-19 (within a week after diagnosis and within two months after recovery from COVID-19) and 40 healthy individuals. As a result, in the infection process of SARS-CoV-2, compared to the healthy individuals, the relative abundances of Prevotella , Aspergillus , and Epstein-Barr virus were elevated; the alpha diversity was decreased; the beta diversity was disordered; the relative abundance of Gram-negative bacteria was increased; and the relative abundance of Gram-positive bacteria was decreased. After the clearance of SARS-CoV-2, compared to the healthy individuals and patients with COVID-19, the above disordered alterations persisted in the patients who had recovered from COVID-19 and did not return to the normal level observed in the healthy individuals. Additionally, the expressions of several antibiotic resistance genes (especially multi-drug resistance, glycopeptide, and tetracycline) in the patients with COVID-19 were higher than those in the healthy individuals. After SARS-CoV-2 was cleared, the expressions of these genes in the patients who had recovered from COVID-19 were lower than those in the patients with COVID-19, and they were different from those in the healthy individuals. In conclusion, our findings provide evidence that potential secondary infections with oropharyngeal bacteria, fungi, and viruses in patients who have recovered from COVID-19 should not be ignored; this evidence also highlights the clinical significance of the oropharyngeal microbiome in the early prevention of potential secondary infections of COVID-19 and suggests that it is imperative to choose appropriate antibiotics for subsequent bacterial secondary infection in patients with COVID-19.