Login / Signup

Transepithelial Transport of YWDHNNPQIR and Its Metabolic Fate with Cytoprotection against Oxidative Stress in Human Intestinal Caco-2 Cells.

Feiran XuLifeng WangXingrong JuJing ZhangShi YinJiayi ShiRong HeQiang Yuan
Published in: Journal of agricultural and food chemistry (2017)
Studies on antioxidant peptides extracted from foodstuff sources have included not only experiments to elucidate their chemical characteristics but also to investigate their bioavailability and intracellular mechanisms. This study was designed to clarify the absorption and antioxidative activity of YWDHNNPQIR (named RAP), which is derived from rapeseed protein using a Caco-2 cell transwell model. Results showed that 0.8% RAP (C0 = 0.2 mM, t = 90 min) could maintain the original structure across the Caco-2 cell monolayers via the intracellular transcytosis pathway, and the apparent drug absorption rate (Papp) was (6.6 ± 1.24) × 10-7 cm/s. Three main fragments (WDHNNPQIR, DHNNPQIR, and YWDHNNPQ) and five modified peptides derived from RAP were found in both the apical and basolateral side of the Caco-2 cell transwell model. Among these new metabolites, WDHNNPQIR had the greatest antioxidative activity in Caco-2 cells apart from the DPPH assay. With a RAP concentration of 200 μM, there were significant differences in four antioxidative indicators (T-AOC, GSH-Px, SOD, and MDA) compared to the oxidative stress control (P < 0.05). In addition, RAP may also influence apoptosis of the Caco-2 cells, which was caused by AAPH-induced oxidative damage.
Keyphrases