Login / Signup

Multiple and Consecutive Genome Editing Using i-GONAD and Breeding Enrichment Facilitates the Production of Genetically Modified Mice.

Carolina R Melo-SilvaCory J KnudsonLingjuan TangSamita KafleLauren E SpringerJihae ChoiChristopher M SnyderYajing WangSangwon V KimLuis J Sigal
Published in: Cells (2023)
Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories. However, genetic modification in inbred mouse strains of interest such as C57BL/6 (B6) is still challenging because of their low fertility and embryo fragility. We have successfully generated multiple novel GM mouse strains in the B6 background while attempting to optimize i-GONAD. We found that i-GONAD reduced the litter size in superovulated pregnant females but did not impact pregnancy rates. Natural mating or low-hormone dose did not increase the low fertility rate observed in superovulated B6 females. However, diet enrichment had a positive effect on pregnancy success. We also optimized breeding conditions to increase the survival of small litters by co-housing i-GONAD-treated pregnant B6 females with synchronized pregnant FVB/NJ companion mothers. Thus, GM mice generation was increased by an enriched diet and shared pup rearing with highly fertile females such as FVB/NJ. In the present study, we generated 16 GM mice using a CRISPR/Cas system to target individual and multiple loci simultaneously or consecutively. We also compared homology-directed repair efficiency using different methods for LoxP insertion for conditional knockout mouse production. We found that a two-step serial LoxP insertion, in which each LoxP sequence was inserted individually in different i-GONAD procedures, was a low-risk high-efficiency method for generating floxed mice.
Keyphrases
  • crispr cas
  • genome editing
  • high fat diet induced
  • genome wide
  • physical activity
  • insulin resistance
  • escherichia coli
  • weight loss
  • pregnancy outcomes
  • type diabetes
  • skeletal muscle
  • palliative care