The thrombopoietin mimetic JNJ-26366821 reduces the late injury and accelerates the onset of liver recovery after acetaminophen-induced liver injury in mice.
Olamide B AdelusiJephte Y AkakpoGary EichenbaumEjaz SadaffAnup RamachandranHartmut JaeschkePublished in: Archives of toxicology (2024)
Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42-48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.
Keyphrases
- liver injury
- drug induced
- endothelial cells
- transcription factor
- stem cells
- magnetic resonance
- signaling pathway
- type diabetes
- computed tomography
- physical activity
- recombinant human
- small molecule
- oxidative stress
- cell free
- vascular endothelial growth factor
- high fat diet induced
- anti inflammatory
- circulating tumor cells