The Non-Canonical Iron-Responsive Element of IRE-tvcp12 Hairpin Structure at the 3'-UTR of Trichomonas vaginalis TvCP12 mRNA That Binds TvHSP70 and TvACTN-3 Can Regulate mRNA Stability and Amount of Protein.
Claudia R León-SicairosElisa E Figueroa-AnguloJaeson Santos Calla-ChoqueRossana ArroyoPublished in: Pathogens (Basel, Switzerland) (2023)
Trichomonas vaginalis is one of the most common sexually transmitted parasites in humans. This protozoan has high iron requirements for growth, metabolism, and virulence. However, iron concentrations also differentially modulate T. vaginalis gene expression as in the genes encoding cysteine proteinases TvCP4 and TvCP12. Our goal was to identify the regulatory mechanism mediating the upregulation of tvcp12 under iron-restricted (IR) conditions. Here, we showed by RT-PCR, Western blot, and immunocytochemistry assays that IR conditions increase mRNA stability and amount of TvCP12. RNA electrophoretic mobility shift assay (REMSA), UV cross-linking, and competition assays demonstrated that a non-canonical iron-responsive element (IRE)-like structure at the 3'-untranslated region of the tvcp12 transcript (IRE-tvcp12) specifically binds to human iron regulatory proteins (IRPs) and to atypical RNA-binding cytoplasmic proteins from IR trichomonads, such as HSP70 and α-Actinin 3. These data were confirmed by REMSA supershift and Northwestern blot assays. Thus, our findings show that a positive gene expression regulation under IR conditions occurs at the posttranscriptional level possibly through RNA-protein interactions between atypical RNA-binding proteins and non-canonical IRE-like structures at the 3'-UTR of the transcript by a parallel mechanism to the mammalian IRE/IRP system that can be applied to other iron-regulated genes of T. vaginalis.
Keyphrases
- gene expression
- iron deficiency
- endoplasmic reticulum stress
- high throughput
- binding protein
- staphylococcus aureus
- endothelial cells
- dna methylation
- escherichia coli
- poor prognosis
- signaling pathway
- nucleic acid
- protein protein
- cancer therapy
- candida albicans
- cell proliferation
- artificial intelligence
- heat stress
- antimicrobial resistance
- pseudomonas aeruginosa