Login / Signup

COVID-19-associated liver injury, role of drug therapy and management: a review.

Chinonyerem Ogadi IheanachoOkechukwu H Enechukwu
Published in: Egyptian liver journal (2022)
The ongoing COVID-19 pandemic is known to affect several body organs, including the liver. This results from several factors such as direct effect of SARS-CoV-2 on the liver, side effects of drug therapy and pre-existing liver diseases. Drug-induced liver injury can result from a range of drugs used in the treatment of COVID-19 such as antiviral drugs, anti-inflammatory drugs, antibiotics, herbal medications and vaccines. Metabolism of most drugs occurs in the liver, and this leaves the liver at risk of medication-induced liver damage. Being among pathologies from the disease, COVID-19 liver injury presents with abnormally high liver-related enzymes, such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphate (ALP), and gamma-glutamyl transferase. It is reversible, generally not severe and occurs more mildly in children. However, COVID-19-associated liver injury is worsened by chronic liver diseases and vice versa. There is a high risk of abnormal ALT and AST, in-hospital liver injury and prolonged SARS-CoV-2 shedding in COVID-19 patients with previously existing metabolic-associated fatty liver disease. COVID-19-associated liver injury also appears to be severe and significantly associated with life-threatening COVID-19 and mortality in persons with a history of liver transplant. Where necessary, only supportive management is usually indicated. This paper evaluates the aetiology, clinical and laboratory features, occurrence and management of COVID-19-associated liver injury. It also elaborated on the role of drug therapy in the development of COVID-19 liver injury.
Keyphrases
  • liver injury
  • drug induced
  • sars cov
  • coronavirus disease
  • adverse drug
  • respiratory syndrome coronavirus
  • stem cells
  • healthcare
  • risk assessment
  • type diabetes
  • risk factors
  • young adults
  • fatty acid
  • bone marrow