Login / Signup

The protein kinase activity of NME7 activates Wnt/β-Catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma.

Xinxin RenZhuoxian RongXiaoyu LiuJie GaoXu XuYuyuan ZiYun MuYidi GuanZhen CaoYuefang ZhangZimei ZengQi FanXitao WangQian PeiXiang WangHaiguang XinZhi LiYingjie NieZilong QiuNan LiLunquan SunYuezhen Deng
Published in: Cancer research (2021)
Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/β-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/β-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/β-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, while overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3β to promote β-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of β-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. Additionally, expression levels of NME7, β-catenin and MTHFD2 correlated with each other and with poor prognosis in HCC patients. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/β-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC.
Keyphrases