Our auditory system constantly keeps track of our environment, informing us about our surroundings and warning us of potential threats. The auditory looming bias is an early perceptual phenomenon, reflecting higher alertness of listeners to approaching auditory objects, rather than to receding ones. Experimentally, this sensation has been elicited by using both intensity-varying stimuli, as well as spectrally varying stimuli with constant intensity. Following the intensity-based approach, recent research delving into the cortical mechanisms underlying the looming bias argues for top-down signaling from the prefrontal cortex to the auditory cortex in order to prioritize approaching over receding sonic motion. We here test the generalizability of that finding to spectrally induced looms by re-analyzing previously published data. Our results indicate the promoted top-down projection but at time points slightly preceding the motion onset and thus considered to reflect a bias driven by anticipation. At time points following the motion onset, our findings show a bottom-up bias along the dorsal auditory pathway directed toward the prefrontal cortex.