Login / Signup

Electrochemically modulated interaction of MXenes with microwaves.

Meikang HanDanzhen ZhangChristopher Eugene ShuckBernard McBrideTeng ZhangRuocun John WangKateryna ShevchukYury Gogotsi
Published in: Nature nanotechnology (2023)
Dynamic control of electromagnetic wave jamming is a notable technological challenge for protecting electronic devices working at gigahertz frequencies. Foam materials can adjust the reflection and absorption of microwaves, enabling a tunable electromagnetic interference shielding capability, but their thickness of several millimetres hinders their application in integrated electronics. Here we show a method for modulating the reflection and absorption of incident electromagnetic waves using various submicrometre-thick MXene thin films. The reversible tunability of electromagnetic interference shielding effectiveness is realized by electrochemically driven ion intercalation and de-intercalation; this results in charge transfer efficiency with different electrolytes, accompanied by expansion and shrinkage of the MXene layer spacing. We finally demonstrate an irreversible electromagnetic interference shielding alertor through electrochemical oxidation of MXene films. In contrast with static electromagnetic interference shielding, our method offers opportunities to achieve active modulation that can adapt to demanding environments.
Keyphrases