Unraveling the fates of resident stem cells during tissue regeneration is an important objective in clinical and basic research. Genetic lineage tracing based on Cre-loxP recombination provides an effective strategy for inferring cell fate and cell conversion in vivo. However, the determination of the exact fates of resident stem cells or their derivatives in disease states and during tissue regeneration remains controversial in many fields of study, partly because of technical limitations associated with Cre-based lineage tracing, such as, for example, off-target labeling. Recently, we generated a new lineage-tracing platform we named DeaLT (dual-recombinase-activated lineage tracing) that uses the Dre-rox recombination system to enhance the precision of Cre-mediated lineage tracing. Here, we describe as an example a detailed protocol using DeaLT to trace the fate of c-Kit+ cardiac stem cells and their derivatives, in the absence of any interference from nontarget cells such as cardiomyocytes, during organ homeostasis and after tissue injury. This lineage-tracing protocol can also be used to delineate the fate of resident stem cells of other organ systems, and takes ~10 months to complete, from mouse crossing to final tissue analysis.
Keyphrases
- stem cells
- cell fate
- single cell
- cell therapy
- patient safety
- quality improvement
- randomized controlled trial
- dna damage
- induced apoptosis
- high throughput
- genome wide
- dna methylation
- risk assessment
- dna repair
- signaling pathway
- heart failure
- emergency medicine
- cell proliferation
- left ventricular
- cell cycle arrest
- heavy metals
- density functional theory