Balancing of Motor Armature Based on LSTM-ZPF Signal Processing.
Ruiwen DongMengxuan LiAo SunZhenrong LuDong JiangWeiyu ChenPublished in: Sensors (Basel, Switzerland) (2022)
Signal processing is important in the balancing of the motor armature, where the balancing accuracy depends on the extraction of the signal amplitude and phase from the raw vibration signal. In this study, a motor armature dynamic balancing method based on the long short-term memory network (LSTM) and zero-phase filter (ZPF) is proposed. This method mainly focuses on the extraction accuracy of amplitude and phase from unbalanced signals of the motor armature. The ZPF is used to accurately extract the phase, while the LSTM network is trained to extract the amplitude. The proposed method combines the advantages of both methods, whereby the problems of phase shift and amplitude loss when used alone are solved, and the motor armature unbalance signal is accurately obtained. The unbalanced mass and phase are calculated using the influence coefficient method. The effectiveness of the proposed method is proven using the simulated motor armature vibration signal, and an experimental investigation is undertaken to verify the dynamic balancing method. Two amplitude evaluation metrics and three phase evaluation metrics are proposed to judge the extraction accuracy of the amplitude and phase, whereas amplitude and frequency spectrum analysis are used to judge the dynamic balancing results. The results illustrate that the proposed method has higher dynamic balancing accuracy. Moreover, it has better extraction accuracy for the amplitude and phase of unbalanced signals compared with other methods, and it has good anti-noise performance. The determination coefficient of the amplitude is 0.9999, and the average absolute error of the phase is 2.4°. The proposed method considers both fidelity and denoising, which ensuring the accuracy of armature dynamic balancing.