Comparative soft-tissue preservation in Holocene-age capelin concretions.
Angel MojarroXingqian CuiXiaowen ZhangAdam B JostKristin D BergmannJakob VintherRoger Everett SummonsPublished in: Geobiology (2021)
Determining how soft tissues are preserved and persist through geologic time are continuing challenge because decay begins immediately after senescence while diagenetic transformations generally progress over days to millions of years. However, in recent years, carbonate concretions containing partially-to-fully decayed macroorganisms have proven to be remarkable windows into the diagenetic continuum revealing insights into the fossilization process. This is because most concretions are the result of biologically induced mineral precipitation caused by the localized decay of organic matter, which oftentimes preserves a greater biological signal relative to their host sediment. Here we present a comparative lipid biomarker study investigating processes associated with soft-tissue preservation within Holocene-age carbonate concretions that have encapsulated modern capelin (Mallotus villosus). We focus on samples collected from two depositional settings that have produced highly contrasting preservation end-members: (1) Kangerlussuaq, Greenland: a marine environment, which, due to isostatic rebound, has exposed strata containing concretions exhibiting exceptional soft-tissue preservation (6-7 kya), and (2) Greens Creek, Ottawa, Canada: a paleo brackish-to-freshwater marine excursion containing concretions exhibiting skeletal remains (~11 kya). Lipid biomarker analysis reveals endogenous capelin tissues and productive waters at Kangerlussuaq that are in sharp contrast to Greens Creek concretions, which lack appreciable capelin and environmental signals. Comparable distributions of bacterial fatty acids and statistical analyses suggest soft-tissue preservation within concretions is agnostic to specific heterotrophic decay communities. We, therefore, interpret preservation within carbonate concretions may represent a race between microbially induced authigenic precipitation and decay. Namely, factors resulting in exceptional preservation within concretions likely include: (1) organic matter input, (2) rate of decay, (3) carbonate saturation, (4) porewater velocity, and (5) rate of authigenic (carbonate) precipitation resulting in arrested decay/bacterial respiration due to cementing pore spaces limiting the diffusion of electron acceptors into the decay foci.