Printable Spin-Multiplexed Metasurfaces for Ultraviolet Holographic Displays.
Hyunjung KangHongyoon KimKyungtae KimJunsuk RhoPublished in: ACS nano (2024)
Multiplexed ultraviolet (UV) metaholograms, which are capable of displaying multiple holographic images from a single-layer device, are promising for enhancing tamper resistance and functioning as optical encryption devices. Despite considerable interest in optical security, the commercialization of UV metaholograms encounters obstacles, such as high-resolution patterning and material choices. Here, we realize spin-multiplexed UV metaholograms using a high-throughput printable platform that incorporates a zirconium dioxide (ZrO 2 ) particle-embedded resin (PER). Utilizing ZrO 2 PER, which is transparent and exhibits a refractive index of approximately 1.8 at 320 nm, we fabricated a single device capable of encoding dual holographic information depending on polarization states is fabricated. We demonstrate UV metaholograms achieving efficiencies of 56.23% with left circularly polarized incident beams and 57.28% with right circularly polarized incident beams. These multiplexed UV metaholograms fabricated using a one-step platform enable real-world applications in anticounterfeiting and encryption.