A Novel Derivative of Curcumol, HCL-23, Inhibits the Malignant Phenotype of Triple-Negative Breast Cancer and Induces Apoptosis and HO-1-Dependent Ferroptosis.
Peng ZhaoHui SongFutian GaoLiang ChenJianfei QiuJun JinChaolan PanYunyan TangMeijun ChenYang PanYanmei LiLiejun HuangJue YangXiaojiang HaoPublished in: Molecules (Basel, Switzerland) (2023)
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer. Curcumol, as a natural small molecule compound, has potential anti-breast cancer activity. In this study, we chemically synthesized a derivative of curcumol, named HCL-23, by structural modification and explored its effect on and underlying mechanism regarding TNBC progression. MTT and colony formation assays demonstrated that HCL-23 significantly inhibited TNBC cells proliferation. HCL-23 induced G2/M phase cell cycle arrest and repressed the capability of migration, invasion, and adhesion in MDA-MB-231 cells. RNA-seq results identified 990 differentially expressed genes including 366 upregulated and 624 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that these differentially expressed genes were obviously enriched in adhesion, cell migration, apoptosis, and ferroptosis. Furthermore, HCL-23 induced apoptosis via the loss of mitochondrial membrane potential and the activation of the caspase family in TNBC cells. In addition, HCL-23 was verified to trigger ferroptosis through increasing cellular reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation levels. Mechanistically, HCL-23 markedly upregulated the expression of heme oxygenase 1 (HO-1), and the knockdown of HO-1 could attenuate ferroptosis induced by HCL-23. In animal experiments, we found that HCL-23 inhibited tumor growth and weight. Consistently, the upregulation of Cleaved Caspase-3, Cleaved PARP, and HO-1 expression was also observed in tumor tissues treated with HCL-23. In summary, the above results suggest that HCL-23 can promote cell death through activating caspases-mediated apoptosis and HO-1-dependent ferroptosis in TNBC. Therefore, our findings provide a new potential agent against TNBC.
Keyphrases
- cell death
- cell cycle arrest
- induced apoptosis
- pi k akt
- signaling pathway
- cell migration
- genome wide
- endoplasmic reticulum stress
- small molecule
- genome wide identification
- oxidative stress
- rna seq
- poor prognosis
- reactive oxygen species
- single cell
- gene expression
- cell proliferation
- weight loss
- bioinformatics analysis
- copy number
- high throughput
- biofilm formation
- weight gain
- human health
- pseudomonas aeruginosa
- candida albicans
- protein protein