Login / Signup

Comparison of pregnancy per AI of heifers inseminated with sex-sorted or conventional semen after oestrus detection or timed artificial insemination.

Baris GunerGulsum SelcukSevket GucluSultan SengulIsmail AltunSerdal DikmenAhmet Gumen
Published in: Reproduction in domestic animals = Zuchthygiene (2021)
The objective of the study was to compare the fertility after using sex-sorted or conventional semen either with oestrus detection (EST) or timed artificial insemination (TAI) in Holstein heifers. Holstein heifers were randomly assigned to one of the following treatments in a 2 × 2 factorial design. Heifers in the EST group were inseminated with sex-sorted (n = 114) or conventional semen (n = 100) after spontaneous or induced oestrus. Heifers in the TAI, subjected to the 5-day Cosynch+Progesterone protocol (GnRH+P4 insertion-5d-PGF2α +P4 removal-1d-PGF2α -2d-GnRH+TAI), were inseminated with sex-sorted (n = 113) or conventional semen (n = 88). Statistical analyses were performed using PROC GLIMMIX procedure of SAS 9.4 (SAS Institute Inc., Cary, NC). Overall P/AI was 60.7% for EST and 54.2% for TAI regardless of types of semen and 68.1% for conventional and 48.9% for sex-sorted semen regardless of insemination strategies. Fertility of heifers inseminated with either sex-sorted (53.5%; 44.2%) or conventional (69.0%; 67.0%) semen did not differ between EST and TAI respectively. Besides, the interaction between the semen type and the insemination strategy was not significant for P/AI. The embryonic loss was significantly greater with sex-sorted semen (17.1%) compared to conventional semen (1.6%). There was no sire effect with sex-sorted semen on P/AI (52.6% vs. 46.2%) and embryonic loss (16.4% vs. 18.0%). As expected, sex-sorted semen resulted in more female calves (89.8% vs. 51.6%) than conventional semen. Thus, sex-sorted semen can be used with 5-day Cosynch+Progesterone protocol to eliminate the inadequate oestrus detection and to increase female calves born in dairy heifers.
Keyphrases
  • randomized controlled trial
  • artificial intelligence
  • machine learning
  • oxidative stress
  • real time pcr
  • diabetic rats
  • sensitive detection