Login / Signup

Three-dimensional aortic geometry: clinical correlates, prognostic value and genetic architecture.

Cameron BeecheMarie-Joe DibBingxin ZhaoJoe David AzzoHannah MaynardJeffrey DudaJames GeeOday Salmannull nullWalter R WitscheyJulio A Chirinos
Published in: bioRxiv : the preprint server for biology (2024)
Aortic structure and function impact cardiovascular health through multiple mechanisms. Aortic structural degeneration increases left ventricular afterload, pulse pressure and promotes target organ damage. Despite the impact of aortic structure on cardiovascular health, aortic 3D-geometry has yet to be comprehensively assessed. Using a convolutional neural network (U-Net) combined with morphological operations, we quantified aortic 3D-geometric phenotypes (AGPs) from 53,612 participants in the UK Biobank and 8,066 participants in the Penn Medicine Biobank. AGPs reflective of structural aortic degeneration, characterized by arch unfolding, descending aortic lengthening and luminal dilation exhibited cross-sectional associations with hypertension and cardiac diseases, and were predictive for new-onset hypertension, heart failure, cardiomyopathy, and atrial fibrillation. We identified 237 novel genetic loci associated with 3D-AGPs. Fibrillin-2 gene polymorphisms were identified as key determinants of aortic arch-3D structure. Mendelian randomization identified putative causal effects of aortic geometry on the risk of chronic kidney disease and stroke.
Keyphrases