Login / Signup

Efficient removal of Cu 2+ and methylene blue pollutants from an aqueous solution by applying a new hybrid adsorbent based on alginate-chitosan and HAP derived from Moroccan rock phosphate.

Ilham JiouiYounes AbroukiSoumia AboulhrouzSaid SairKarim DânounMohamed Zahouily
Published in: Environmental science and pollution research international (2023)
Alginate-chitosan/hydroxyapatite (Alg-Cs/HAP) beads were prepared as adsorbent to remove methylene blue (MB) and copper ions from an aqueous solution using a batch system. FTIR, TGA, point of zero charge (pH pzc ), SEM, XRD, and BET analysis were used to characterize the elaborated material. The effect of several parameters such as initial pH value, adsorbent dose, temperature, contact time, and initial pollutant concentration were also investigated. The obtained results showed that Alg-Cs/HAP exhibit excellent adsorption properties for Cu (II) and MB removal, with high adsorption capacities of copper ions (208.34 mg/g) and methylene blue (454.54 mg/g). The kinetic of the adsorption process is correlated with the pseudo-first-order for methylene blue and the pseudo-second-order for copper ions. The equilibrium data for MB dye fitted the Freundlich isotherm model, thus implying that the adsorption process consists of multilayer adsorption as well as interactions between the adsorbate and the adsorbent. The equilibrium data for copper ions corresponds closely with the Langmuir model which suggests that the adsorbed molecules occur over a monolayer. Various thermodynamic parameters such as the standard Gibbs energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were calculated. All results indicated that Alg-Cs/HAP material has a good potential for the treatment of wastewater.
Keyphrases