Temporal Immunomodulation via Wireless Programmed Electric Cues Achieves Optimized Diabetic Bone Regeneration.
Jiwei SunDanlei ZhaoYifan WangPing ChenChao XuHaoqi LeiKeqi WoJunyuan ZhangJinyu WangCheng YangBin SuZuolin JinZhiqiang LuoLili ChenPublished in: ACS nano (2023)
Mimicking the temporal pattern of biological behaviors during the natural repair process is a promising strategy for biomaterial-mediated tissue regeneration. However, precise regulation of dynamic cell behaviors allocated in a microenvironment post-implantation remains challenging until now. Here, remote tuning of electric cues is accomplished by wireless ultrasound stimulation (US) on an electroactive membrane for bone regeneration under a diabetic background. Programmable electric cues mediated by US from the piezoelectric membrane achieve the temporal regulation of macrophage polarization, satisfying the pattern of immunoregulation during the natural healing process and effectively promoting diabetic bone repair. Mechanistic insight reveals that the controllable decrease in AKT2 expression and phosphorylation could explain US-mediated macrophage polarization. This study exhibits a strategy aimed at precisely biosimulating the temporal regenerative pattern by controllable and programmable electric output for optimized diabetic tissue regeneration and provides basic insights into bionic design-based precision medicine achieved by intelligent and external field-responsive biomaterials.