Login / Signup

A 127 kb truncating deletion of PGRMC1 is a novel cause of X-linked isolated paediatric cataract.

Johanna L JonesMark A CorbettElise YeamanDuran ZhaoJozef GeczRobert J GasperiniJac C CharlesworthDavid A MackeyJames E ElderJamie E CraigKathryn P Burdon
Published in: European journal of human genetics : EJHG (2021)
Inherited paediatric cataract is a rare Mendelian disease that results in visual impairment or blindness due to a clouding of the eye's crystalline lens. Here we report an Australian family with isolated paediatric cataract, which we had previously mapped to Xq24. Linkage at Xq24-25 (LOD = 2.53) was confirmed, and the region refined with a denser marker map. In addition, two autosomal regions with suggestive evidence of linkage were observed. A segregating 127 kb deletion (chrX:g.118373226_118500408del) in the Xq24-25 linkage region was identified from whole-genome sequencing data. This deletion completely removed a commonly deleted long non-coding RNA gene LOC101928336 and truncated the protein coding progesterone receptor membrane component 1 (PGRMC1) gene following exon 1. A literature search revealed a report of two unrelated males with non-syndromic intellectual disability, as well as congenital cataract, who had contiguous gene deletions that accounted for their intellectual disability but also disrupted the PGRMC1 gene. A morpholino-induced pgrmc1 knockdown in a zebrafish model produced significant cataract formation, supporting a role for PGRMC1 in lens development and cataract formation. We hypothesise that the loss of PGRMC1 causes cataract through disrupted PGRMC1-CYP51A1 protein-protein interactions and altered cholesterol biosynthesis. The cause of paediatric cataract in this family is the truncating deletion of PGRMC1, which we report as a novel cataract gene.
Keyphrases