Determinants of Antibody Responses to SARS-CoV-2 Vaccines: Population-Based Longitudinal Study (COVIDENCE UK).
David A JolliffeSian E FaustiniHayley HoltNatalia PerdekSheena MaltbyMohammad TalaeiMatthew GreenigGiulia VivaldiFlorence TydemanJane SymonsGwyneth A DaviesRonan A LyonsChristopher J GriffithsFrank KeeAziz SheikhSeif O ShaheenAlex G RichterAdrian R MartineauPublished in: Vaccines (2022)
Antibody responses to SARS-CoV-2 vaccines vary for reasons that remain poorly understood. A range of sociodemographic, behavioural, clinical, pharmacologic and nutritional factors could explain these differences. To investigate this hypothesis, we tested for presence of combined IgG, IgA and IgM (IgGAM) anti-Spike antibodies before and after 2 doses of ChAdOx1 nCoV-19 (ChAdOx1, AstraZeneca) or BNT162b2 (Pfizer-BioNTech) in UK adults participating in a population-based longitudinal study who received their first dose of vaccine between December 2020 and July 2021. Information on sixty-six potential sociodemographic, behavioural, clinical, pharmacologic and nutritional determinants of serological response to vaccination was captured using serial online questionnaires. We used logistic regression to estimate multivariable-adjusted odds ratios (aORs) for associations between independent variables and risk of seronegativity following two vaccine doses. Additionally, percentage differences in antibody titres between groups were estimated in the sub-set of participants who were seropositive post-vaccination using linear regression. Anti-spike antibodies were undetectable in 378/9101 (4.2%) participants at a median of 8.6 weeks post second vaccine dose. Increased risk of post-vaccination seronegativity associated with administration of ChAdOx1 vs. BNT162b2 (adjusted odds ratio (aOR) 6.6, 95% CI 4.2-10.4), shorter interval between vaccine doses (aOR 1.6, 1.2-2.1, 6-10 vs. >10 weeks), poor vs. excellent general health (aOR 3.1, 1.4-7.0), immunodeficiency (aOR 6.5, 2.5-16.6) and immunosuppressant use (aOR 3.7, 2.4-5.7). Odds of seronegativity were lower for participants who were SARS-CoV-2 seropositive pre-vaccination (aOR 0.2, 0.0-0.6) and for those taking vitamin D supplements (aOR 0.7, 0.5-0.9). Serologic responses to vaccination did not associate with time of day of vaccine administration, lifestyle factors including tobacco smoking, alcohol intake and sleep, or use of anti-pyretics for management of reactive symptoms after vaccination. In a sub-set of 8727 individuals who were seropositive post-vaccination, lower antibody titres associated with administration of ChAdOx1 vs. BNT162b2 (43.4% lower, 41.8-44.8), longer duration between second vaccine dose and sampling (12.7% lower, 8.2-16.9, for 9-16 weeks vs. 2-4 weeks), shorter interval between vaccine doses (10.4% lower, 3.7-16.7, for <6 weeks vs. >10 weeks), receiving a second vaccine dose in October-December vs. April-June (47.7% lower, 11.4-69.1), older age (3.3% lower per 10-year increase in age, 2.1-4.6), and hypertension (4.1% lower, 1.1-6.9). Higher antibody titres associated with South Asian ethnicity (16.2% higher, 3.0-31.1, vs. White ethnicity) or Mixed/Multiple/Other ethnicity (11.8% higher, 2.9-21.6, vs. White ethnicity), higher body mass index (BMI; 2.9% higher, 0.2-5.7, for BMI 25-30 vs. <25 kg/m 2 ) and pre-vaccination seropositivity for SARS-CoV-2 (105.1% higher, 94.1-116.6, for those seropositive and experienced COVID-19 symptoms vs. those who were seronegative pre-vaccination). In conclusion, we identify multiple determinants of antibody responses to SARS-CoV-2 vaccines, many of which are modifiable.