Impact of Sustained Exogenous Irisin Myokine Administration on Muscle and Myocyte Integrity in Sprague Dawley Rats.
Foad AlzoughoolMohammad Borhan Al-ZghoulBayan Y GhanimManar AtoumYousef AljawarnehNasir IdkaidekNidal A QinnaPublished in: Metabolites (2022)
Irisin is an exercise-induced myokine implicated as a fundamental mediator of physical activity benefits. The aim of the present study was to investigate the role of the chronic administration model of irisin on the physiological and molecular status of skeletal muscle. A total of 20 female Sprague Dawley rats (250 ± 40 g) were implanted with an irisin-loaded osmotic pump (5 µg/kg/day) for 42 days; in addition, 3 females received a single subcutaneous injection of irisin (5 µg/kg). On a weekly basis for six weeks, animals were weighed and blood samples were collected. After 42 days, hind muscle biopsies were collected for histology and gene analysis. Serum irisin, clinical biochemistry, and histopathology were quantified and evaluated. Genes encoding for different physiological muscle activities, such as oxidative stress, fatty acid metabolism, muscle hypertrophy, mitochondrial fusion, and aging were assayed. The results showed a significant reduction in body weight percentage and creatine kinase level without affecting the morphological characteristics of skeletal muscle. Significant changes were noted in genes involved in muscle physiological activity, growth, and aging, as well as genes encoding for the antioxidant system, fatty acid oxidation processes, and mitochondrial fusion. In conclusion, exogenous irisin can induce the same physiological and molecular mechanisms that might be induced by exercise.