Reduced Levels of Brain-Derived Neurotrophic Factor Affect Body Weight, Brain Weight and Behavior.
Matthias Wilhelm VoigtJens SchepersJacqueline HaasOliver von Bohlen Und HalbachPublished in: Biology (2024)
Neurotrophins, which belong to the family of growth factors, not only play crucial roles during development but are also involved in many processes in the postnatal brain. One representative of neurotrophins is brain-derived neurotrophic factor (BDNF). BDNF plays a role in the regulation of body weight and neuronal plasticity and is, therefore, also involved in processes associated with learning and memory formation. Many of the studies on BDNF have been carried out using BDNF-deficient mice. Unfortunately, homozygous deletion of BDNF is lethal in the early postnatal stage, so heterozygous BDNF-deficient mice are often studied. Another possibility is the use of conditional BDNF-deficient mice in which the expression of BDNF is strongly downregulated in some brain cells, for example, in the neurons of the central nervous system, but the expression of BDNF in other cells in the brain is unchanged. To further reduce BDNF expression, we crossed heterozygous BDNF-deficient mice with mice carrying a deletion of BDNF in neurofilament L-positive neurons. These offspring are viable, and the animals with a strong reduction in BDNF in the brain show a strongly increased body weight, which is accompanied by a reduction in brain weight. In addition, these animals show behavioral abnormalities, particularly with regard to locomotion.