Login / Signup

Point mutations that boost aromatic amino acid production and CO 2 assimilation in plants.

Ryo YokoyamaMarcos V V de OliveiraYuri TakedaHirofumi IshiharaSaleh AlseekhStéphanie ArrivaultVandna KukshalJoseph M JezMark StittAlisdair Robert FernieHiroshi A Maeda
Published in: Science advances (2022)
Aromatic compounds having unusual stability provide high-value chemicals and considerable promise for carbon storage. Terrestrial plants can convert atmospheric CO 2 into diverse and abundant aromatic compounds. However, it is unclear how plants control the shikimate pathway that connects the photosynthetic carbon fixation with the biosynthesis of aromatic amino acids, the major precursors of plant aromatic natural products. This study identified suppressor of tyra2 ( sota ) mutations that deregulate the first step in the plant shikimate pathway by alleviating multiple effector-mediated feedback regulation in Arabidopsis thaliana . The sota mutant plants showed hyperaccumulation of aromatic amino acids accompanied by up to a 30% increase in net CO 2 assimilation. The identified mutations can be used to enhance plant-based, sustainable conversion of atmospheric CO 2 to high-energy and high-value aromatic compounds.
Keyphrases
  • amino acid
  • arabidopsis thaliana
  • cell wall