Optimal Design of Ph-Neutral Geopolymer Foams for Their Use in Ecological Plant Cultivation Systems.
Magdalena Szechyńska-HebdaJoanna MarczykCelina ZiejewskaNatalia HordyńskaJanusz MikułaMarek HebdaPublished in: Materials (Basel, Switzerland) (2019)
We have calculated that with the world population projected to increase from 7.5 billion in 2017 to 9.8 in 2050, the next generation (within 33 years) will produce 12,000-13,000 Mt of plastic, and that the yearly consumption will reach 37-40 kilos of plastic per person worldwide. One of the branches of the plastics industry is the production of plastics for agriculture e.g., seed trays and pots. In this paper, novel metakaolin-based geopolymer composites reinforced with cellulosic fibres are presented as an alternative to plastic pots. Materials can be dedicated to agricultural applications, provided they have neutral properties, however, geopolymer paste and its final products have high pH. Therefore, a two-step protocol of neutralisation of the geopolymer foam pots was optimised and implemented. The strength of the geopolymer samples was lower when foams were neutralised. The reinforcement of geopolymers with cellulose clearly prevented the reduction of mechanical properties after neutralisation, which was correlated with the lower volume of pores in the foam and with the cellulose chemical properties. Both, neutralisation and reinforcement with cellulose can also eliminate an efflorescence. Significantly increased plant growth was found in geopolymer pots in comparison to plastic pots. The cellulose in geopolymers resulted in better adsorption and slower desorption of minerals during fertilisation. This effect could also be associated with a lower number of large pores in the presence of cellulose fibres in pots, and thus more stable pore filling and better protection of internal surface interactions.