Surfactant Cocktail-Aided Extraction/Precipitation/On-Pellet Digestion Strategy Enables Efficient and Reproducible Sample Preparation for Large-Scale Quantitative Proteomics.
Shichen ShenBo AnXue WangShannon P HilcheyJun LiJin CaoYu TianChenqi HuLiang JinAndrew NgChengjian TuMiao QuMartin S ZandJun QuPublished in: Analytical chemistry (2018)
For quantitative proteomics, efficient, robust, and reproducible sample preparation with high throughput is critical yet challenging, especially when large cohorts are involved, as is often required by clinical/pharmaceutical studies. We describe a rapid and straightforward surfactant cocktail-aided extraction/precipitation/on-pellet digestion (SEPOD) strategy to address this need. Prior to organic solvent precipitation and on-pellet digestion, SEPOD treats samples with a surfactant cocktail (SC) containing multiple nonionic/anionic surfactants, which achieves (i) exhaustive/reproducible protein extraction, including membrane-bound proteins; (ii) effective removal of detrimental nonprotein matrix components (e.g., >94% of phospholipids); (iii) rapid/efficient proteolytic digestion owing to dual (surfactants + precipitation) denaturation. The optimal SC composition and concentrations were determined by Orthogonal-Array-Design investigation of their collective/individuals effects on protein extraction/denaturation. Key parameters for cleanup and digestion were experimentally identified as well. The optimized SEPOD procedures allowed a rapid 6 h digestion providing a clean digest with high peptide yields and excellent quantitative reproducibility (especially low-abundance proteins). Compared with filter-assisted sample preparation (FASP) and in-solution digestion, SEPOD showed superior performance by recovering substantially more peptide/proteins (including integral membrane proteins), yielding significantly higher peptide intensities and improving quantification for peptides with extreme physicochemical properties. SEPOD was further applied in a large-cohort temporal investigation of 44 IAV-infected mouse lungs, providing efficient and reproducible peptide yields (77.9 ± 4.6%) across all samples. With the IonStar pipeline, >6 400 unique protein groups were quantified (≥2 peptide/protein, peptide-FDR < 0.05%), ∼99% without missing data in any sample with <7% technical median-intragroup CV. Altered proteome patterns revealed interesting novel insights into pathophysiological changes by IAV infection. In summary, SEPOD offers a feasible solution for rapid, efficient, and reproducible preparation of biological samples, facilitating high-quality proteomic quantification of large sample cohorts.