Angiogenesis is mainly regulated by the delivery of VEGF-dependent signaling to cells. However, the angiogenesis mechanism regulated by VEGF-induced miRNA is still not understood. After VEGF treatment in HUVECs, we screened the changed miRNAs through small-RNA sequencing and found VEGF-induced miR-4701-3p. Furthermore, the GFP reporter gene was used to reveal that TOB2 expression was regulated by miR-4701-3p, and it was found that TOB2 and miR-4701-3p modulation could cause angiogenesis in an in-vitro angiogenic assay. Through the luciferase assay, it was confirmed that the activation of the angiogenic transcription factor MEF2 was regulated by the suppression and overexpression of TOB2 and miR-4701-3p. As a result, MEF2 downstream gene mRNAs that induce angiogenic function were regulated. We used the NCBI GEO datasets to reveal that the expression of TOB2 and MEF2 was significantly changed in cardiovascular disease. Finally, it was confirmed that the expression of circulating miR-4701-3p in the blood of myocardial infarction patients was remarkably increased. In patients with myocardial infarction, circulating miR-4701-3p was increased regardless of age, BMI, and sex, and showed high AUC levels in specificity and sensitivity analysis (AUROC) (AUC = 0.8451, 95 % CI 0.78-0.90). Our data showed TOB2-mediated modulation of MEF2 and its angiogenesis by VEGF-induced miR-4701-3p in vascular endothelial cells. In addition, through bioinformatics analysis using GEO data, changes in TOB2 and MEF2 were revealed in cardiovascular disease. We suggest that circulating miR-4701-3p has high potential as a biomarker for myocardial infarction.
Keyphrases
- endothelial cells
- high glucose
- vascular endothelial growth factor
- cardiovascular disease
- transcription factor
- poor prognosis
- single cell
- genome wide
- heart failure
- left ventricular
- high throughput
- diabetic rats
- type diabetes
- end stage renal disease
- newly diagnosed
- binding protein
- ejection fraction
- rna seq
- induced apoptosis
- dna methylation
- cell proliferation
- chronic kidney disease
- drug induced
- copy number
- coronary artery disease
- crispr cas
- electronic health record
- long non coding rna
- body mass index
- cell death
- cell cycle arrest
- oxidative stress
- peritoneal dialysis
- structural basis
- patient reported outcomes
- combination therapy