Tetramethylpyrazine (TMP) is one of the active ingredients of Chuan Xiong that has been reported to have effects on numerous diseases, including diabetic nephropathy (DN). Whereas, related molecular mechanisms are not fully elucidated. We aimed to explore circACTR2's role in TMP-mediated protective effects on DN. In vitro DN condition was established in human kidney cells (HK-2) by treating high glucose (HG). CCK-8 assay and flow cytometry assay were used to observe cell viability and survival. Oxidative stress was determined by the associated markers using kits. The release of inflammatory factors was detected using ELISA kits. Quantitative real-time PCR (qPCR) and western blot were utilized for expression analysis of cricACTR2, miR-140-5p, and GLI pathogenesis-related 2 (GLIPR2). The binding between miR-140-5p and circACTR2 or GLIPR2 was confirmed by dual-luciferase, RIP, and pull-down studies. HG largely induced HK-2 cell apoptosis, oxidative stress, and inflammation, which were alleviated by TMP. CircACTR2's expression was enhanced in HG-treated HK-2 cells but attenuated in HG + TMP-treated HK-2 cells. CircACTR2 overexpression attenuated the functional effects of TMP and thus restored HG-induced cell apoptosis, oxidative stress, and inflammation. CircACTR2 bound to miR-140-5p to enhance the expression of GLIPR2. MiR-140-5p restoration or GLIPR2 inhibition reversed the role of circACTR2 overexpression. CircACTR2 attenuated the protective effects of TMP on HG-induced HK-2 cell damages by regulating the miR-140-5p/GLIPR2 network, indicating that circACTR2 was involved in the functional network of TMP in DN.
Keyphrases
- high glucose
- endothelial cells
- oxidative stress
- induced apoptosis
- diabetic rats
- poor prognosis
- fluorescent probe
- cell proliferation
- cell cycle arrest
- endoplasmic reticulum stress
- dna damage
- flow cytometry
- ischemia reperfusion injury
- diabetic nephropathy
- signaling pathway
- living cells
- aqueous solution
- single cell
- binding protein
- cell therapy
- stem cells
- transcription factor
- long non coding rna
- mass spectrometry
- real time pcr
- pi k akt
- newly diagnosed
- heat stress