Login / Signup

Mitochondria-targeted curcumin loaded CTPP-PEG-PCL self-assembled micelles for improving liver fibrosis therapy.

Liqiao ZhangXiuhua PanLixing XuLinlin ZhangHaiqing Huang
Published in: RSC advances (2021)
Liver fibrosis, originating from activated hepatic stellate cells (HSCs), is receiving much attention in the treatment of clinical liver disease. In this study, mitochondria-targeted curcumin (Cur) loaded 3-carboxypropyl-triphenylphosphonium bromide-poly(ethylene glycol)-poly(ε-caprolactone) (CTPP-PEG-PCL) micelles were constructed to prolong the systemic circulation of Cur, improve the bioavailability of Cur and play a precise role in anti-fibrosis. The prepared Cur-CTPP-PEG-PCL micelles with a spherical shape had satisfactory dispersion, low critical micelle concentration (CMC) and high encapsulation efficiency (92.88%). The CTPP modification endowed good endosomal escape ability to the CTPP-PEG-PCL micelles, and micelles could be selectively accumulated in mitochondria, thereby inducing the enhanced cell proliferation inhibition of HSC-T6 cells. Mitochondrial Membrane Potential (MMP) was greatly reduced due to the mitochondrial-targeting of Cur. Moreover, the system circulation of Cur was extended and bioavailability was significantly enhanced in vivo . As expected, Cur loaded CTPP-PEG-PCL micelles were more effective in improving liver fibrosis compared with Cur and Cur-mPEG-PCL micelles. In conclusion, the Cur-CTPP-PEG-PCL based micelles can be a potential candidate for liver fibrosis treatment in future clinical applications.
Keyphrases